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Highlights 27 

 A robust method cross-calibrated PlanetScope using BRDF-adjusted MODIS.28 

 Calibrated data accurately assessed ecosystem-scale and crown-scale reflectance.29 

 A dry-season decrease in non-photosynthetic vegetation (NPV) fraction was detected.30 

 Large seasonal trend variability in crown-scale NPV fraction was quantified.31 
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Abstract 32 

In tropical forests, leaf phenology—particularly the pronounced dry-season green-up—33 

strongly regulates biogeochemical cycles of carbon and water fluxes. However, uncertainties 34 

remain in the understanding of tropical forest leaf phenology at different spatial scales. Phenocams 35 

accurately characterize leaf phenology at the crown and ecosystem scales but are limited to a few 36 

sites and time spans of a few years. Time-series satellite observations might fill this gap, but the 37 

commonly used satellites (e.g. MODIS, Landsat and Sentinel-2) have resolutions too coarse to 38 

characterize single crowns. To resolve this observational challenge, we used the PlanetScope 39 

constellation with a 3m resolution and near daily nadir-view coverage. We first developed a 40 

rigorous method to cross-calibrate PlanetScope surface reflectance using daily BRDF-adjusted 41 

MODIS as the reference. We then used linear spectral unmixing of calibrated PlanetScope to 42 

obtain dry-season change in the fractional cover of green vegetation (GV) and non-photosynthetic 43 

vegetation (NPV) at the PlanetScope pixel level. We used the Central Amazon Tapajos National 44 

Forest k67 site, as all necessary data (from field to phenocam and satellite observations) was 45 

available. For this proof of concept, we chose a set of 22 dates of PlanetScope measurements in 46 

2018 and 16 in 2019, all from the six drier months of the year to provide the highest possible cloud-47 

free temporal resolution. Our results show that MODIS-calibrated dry-season PlanetScope data (1) 48 

accurately assessed seasonal changes in ecosystem-scale and crown-scale spectral reflectance; (2) 49 

detected an increase in ecosystem-scale GV fraction (and a decrease in NPV fraction) from June 50 

to November of both years, consistent with local phenocam observations with R2 around 0.8; and 51 

(3) monitored large seasonal trend variability in crown-scale NPV fraction. Our results highlight52 

the potential of integrating multi-scale satellite observations to extend fine-scale leaf phenology 53 

monitoring beyond the spatial limits of phenocams. 54 

55 

56 

Keywords: Multi-scale satellite observations, PlanetScope, MODIS, BRDF correction, 57 

reflectance cross-calibration, leaf phenology, non-photosynthetic vegetation, individual tree 58 

crowns. 59 

60 
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1. Introduction61 

Leaf phenology dominates seasonal and spatial variability in carbon and water fluxes (Jung 62 

et al., 2019; Restrepo-Coupe et al., 2013), with important vegetation mediated feedbacks to 63 

regional and global climates (Bonan, 2008; Wright et al., 2017). At the ecosystem scale, leaf 64 

phenology emerges from all individuals and species living in a plant community, and the 65 

phenology of these individuals shows large differential sensitivity response to climate change, 66 

even within a temperate deciduous forest community (Richardson et al., 2018). Therefore, it is 67 

increasingly important for the field to move towards the study of leaf phenology at the individual 68 

tree-crown level. 69 

Compared with the highly predictable phenological cycles in the temperate biomes, leaf 70 

phenology in tropical evergreen forests is even more complex and less understood (Albert et al., 71 

2019; Reich, 1995). Much recent evidence from ground observations (Detto et al., 2018; Xu et al., 72 

2017) and phenocams (de Moura et al., 2017; Lopes et al., 2016) shows unusual leaf phenology 73 

patterns in tropical “evergreen” forests. That is, the forest ecosystem appears evergreen all year 74 

round, but strong seasonal leaf phenology dynamics occur at the tree-crown level with two typical 75 

patterns. First, about 60-70% of all individuals rapidly exchange old leaves for new leaves during 76 

the high-sunlight dry season (Gonçalves et al., 2020; Wu et al., 2016). Second, also in the dry 77 

season, some upper canopy crowns drop part or all of their leaves and remain the leafless status 78 

for few weeks prior to massive new leaf flush. These unique phenology patterns further cause 79 

strong seasonal variation in ecosystem-scale leaf quality (i.e. photosynthetic capacity and optical 80 

properties) as a function of leaf age mix, which helps explain the large dry season increase in 81 

tropical forest photosynthesis (Albert et al., 2018; Wu et al., 2016) and satellite-detected greenness 82 

(Wu et al., 2018). Despite the increasing importance of crown-scale phenology study in multiple 83 

ecology-related fields, there is yet lacking high resolution monitoring that can help interpret fine-84 

scale phenological dynamics and explain large spatial heterogeneity across forest landscapes. 85 

Therefore, accurate characterization and understanding of tropical leaf phenology (i.e. particularly 86 

the pronounced dry-season phenological variations and green-up) at different spatial scales remain 87 

an essential problem in tropical ecology studies. 88 

However, several challenges remain. Phenocams may be the most accurate way to quantify 89 

tropical leaf phenology from individual tree-crowns up to landscapes (Alberton et al., 2017; Lopes 90 

et al., 2016; Moore et al., 2016), but are very limited in their footprints and time spans. For example, 91 
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a phenocam mounted on a 60m tower typically covers only dozens of upper canopy tree-crowns 92 

within an area of several hectares (Wu et al., 2016). In addition, existing phenocams have been 93 

deployed at only a few forest sites and span a few years (e.g. e-phenocam network in Brazil, 94 

http://www.recod.ic.unicamp.br/ephenology/client/index.html#/phenocamNetwork). Satellite 95 

remote sensing with large area coverage and frequent revisits can be a powerful alternative solution 96 

(Huete et al., 2002, 2006). Unfortunately, as shown in a recent ground-based tree survey study in 97 

an Amazon evergreen forest of French Guiana (Blanchard et al., 2016), the crown diameter for 98 

tropical canopy crowns is normally small, ranging from a few meters to tens of meters at most. As 99 

such, most commonly used satellite observations, such as Moderate Resolution Imaging 100 

Spectroradiometer (MODIS) of 500m per pixel, Landsat of 30m, and Sentinel-2 of 10m, remain 101 

too coarse to monitor leaf phenology dynamics at the individual tree-crown scale. 102 

The increasing availability of high spatial and temporal resolution satellite data offers an 103 

unprecedented opportunity to help resolve both the spatial coverage limitation of phenocams and 104 

the lack of tree-crown scale observations from coarse-resolution satellite remote sensing. 105 

Particularly, the PlanetScope constellation of more than 120 sensors (Planet Labs Inc., San 106 

Francisco, CA) has several advantages, including daily-to-weekly global coverage at a 3m spatial 107 

resolution and near-nadir view (Planet Team, 2018), but has not yet been fully explored. As with 108 

other optical orbital sensors (e.g. Galvao et al., 2011; Samanta et al., 2010), the PlanetScope 109 

reflectance products are also subject to cloud/aerosol contamination and the Bidirectional 110 

Reflectance Distribution Function (BRDF) effect that is associated with image acquisition under 111 

variable illumination and sensor viewing geometries. Individual PlanetScope sensors also have 112 

inconsistencies in their DN scaling (Houborg and McCabe, 2018a, 2018b). However, a rigorous 113 

method to utilize PlanetScope data to aid assessments of land surface reflectance seasonality is 114 

neither developed yet nor rigorously evaluated. Additionally, multiple biophysical processes, such 115 

as seasonal variations in canopy leaf area index (LAI), in leaf age mix and in canopy structure, can 116 

affect canopy reflectance seasonality simultaneously (Wu et al., 2018), making it difficult to 117 

directly connect observed canopy reflectance seasonality with leaf phenology (e.g. leafy versus 118 

leafless phenostages) at the tree-crown scale. 119 

Recent advances in satellite data fusion techniques and improved biophysical 120 

understanding of satellite reflectance products appear to be promising for application of fine-scale 121 

phenology monitoring in tropical evergreen forests. For example, by first calibrating Landsat using 122 
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BRDF-adjusted MODIS data and then explicitly accounting for both spatial (from 30m spatial 123 

resolution Landsat) and temporal (from daily MODIS) variations, Luo et al. (2018) demonstrated 124 

the feasibility to combine MODIS and Landsat satellites to enable land surface monitoring at daily, 125 

30m resolution. This suggests the technical feasibility to integrate MODIS and PlanetScope data 126 

to enable high-resolution phenology monitoring at a 3m resolution in tropical evergreen forests. 127 

Additionally, several recent studies demonstrate the feasibility to differentiate leafless tree-crowns 128 

from leafy tree-crowns using high-resolution satellite images, such as QuickBird of a 2.62m 129 

resolution (Lopes et al., 2016) and WorldView-2 of a 1.84m resolution (Wu et al., 2018). The 130 

underlying biophysical basis is that the reflectance spectra of leafless tree-crowns are significantly 131 

different from those of leafy tree-crowns—a phenomenon that has been commonly observed 132 

across multiple tropical forest sites over large tropical areas (Clark and Roberts, 2012; Lopes et 133 

al., 2016; Viennois et al., 2013; Wu et al., 2018). As such, we believe high-resolution satellite data 134 

like PlanetScope could offer a novel means to quantitatively differentiate the green vegetation (GV) 135 

fraction from that of non-photosynthetic vegetation (NPV) in the upper canopy of tropical 136 

evergreen forests.                                                                                                                                                                                                137 

The goal of this study is to investigate the technical feasibility and mechanistic soundness 138 

of integrating MODIS and PlanetScope data for cross-scale (from fine-scale of 3m to landscapes 139 

of a few kilometers) phenology monitoring, with a particular focus on the dry-season phenological 140 

trend. Specifically, we first developed a method to rigorously cross-calibrate PlanetScope 141 

reflectance data using BRDF-adjusted MODIS. We then evaluated the fine-scale robustness of the 142 

developed method by assessing the seasonal reflectance pattern of permanent objects and assessed 143 

the large-scale robustness by comparing ecosystem-scale seasonal reflectance pattern of the 144 

calibrated data with the corresponding pattern from MODIS. Further, we estimated fractions of 145 

GV and NPV at the pixel and ecosystem levels, using a linear spectral unmixing model. By this 146 

means, we hope to use a metric of NPV fraction (or GV fraction) with clear biophysical meaning 147 

for tropical phenology monitoring. For this proof-of-concept, we focus on the Central Amazon dry 148 

season, when crown-scale and ecosystem-scale leaf phenology changes are more pronounced and 149 

when more frequent cloud-free images are available. 150 

 151 

2. Study site and materials 152 

2.1 Study site 153 
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A Central Amazon tropical evergreen forest at the k67 eddy covariance tower site 154 

(54°58’W, 2°51’S) was used in this study (Fig. 1a). It is the Tapajos National Forest, near Santarém, 155 

Pará, Brazil. We selected this site for three reasons. First, there were rich related field observations 156 

previously made at this forest site, including both field and tower-phenocam measurements of leaf 157 

phenology (Brando et al., 2010; Wu et al., 2016). Second, the forest is on an extensive well-drained 158 

clay-soil plateau (Rice et al., 2004), which minimizes the effects of topography on satellite-159 

detected canopy reflectance (Matsushita et al., 2007) and thus makes it easy to interpret satellite 160 

data. Third, it is a typical tropical evergreen forest in the Central Amazon, and ground-observed 161 

phenology pattern in this site is very comparable with that of other Central Amazon tropical forests 162 

near Manaus, Brazil (Lopes et al., 2016; Wu et al 2016). Additionally, similar to other tropical 163 

evergreen forests (Eamus, 1999), it has rich plant diversity and includes vast variability in crown-164 

level leaf phenology ranging from evergreen to semi deciduous and fully (but briefly) deciduous. 165 

The forest has a mean annual air temperature of 26 °C (Hutyra et al., 2007), and a mean annual 166 

precipitation of 2022 mm yr-1 with a 5-month-long dry season from July to November (Wu et al., 167 

2016). For details about forest composition and structure of the k67 site see Rice et al. (2004). 168 

About 37 km north of this forest site is the town of Alter do Chão, which is predominated by the 169 

urban land cover type with some mixture of forests as well. The urban area, particularly the 170 

building materials with constant reflectance spectra after BRDF correction, was included to 171 

evaluate the robustness of our method (see Section 3.2.4).  172 

 173 

2.2 Materials 174 

Four different kinds of data were available at k67 to characterize leaf phenology patterns. 175 

These include field measurements of LAI, tower-phenocam measurements of tree-crown 176 

phenostages (i.e. leafy versus leafless), and two types of optical satellite remote sensing 177 

(PlanetScope and MODIS). Since different datasets were sampled in different time periods with 178 

various durations while optical satellites were subject to heavy cloud contamination in the wet 179 

season, to minimize all these effects, we limited our study to trends in the long dry season. 180 

Specifically, we aimed to use field- and tower-based phenology measurements to help evaluate 181 

satellite-derived phenology metrics.  182 

Field measurements of LAI (projected leaf area per unit ground area, m2m-2) were 183 

previously made monthly from January 2000 to December 2005 at 100 grid points systematically 184 
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distributed in a 1-ha plot, ~5km from the k67 tower site, using two LiCor-2000 Plant Canopy 185 

Analyzers (LiCOR Inc., Lincoln, NE). For details regarding the data and data collection procedure 186 

see Brando et al. (2010). We here used the mean annual cycle of monthly field-observed LAI to 187 

indicate the average ecosystem-scale phenology pattern of this forest site.  188 

A 3-band (NIR, red, and green) Tetracam Agricultural Digital Camera (Tetracam Inc., 189 

Chatsworth, CA) was mounted on the k67 eddy covariance tower for leaf phenology monitoring 190 

(Fig. 1b). It had a field of view of about 200×300 m2, covering around 65 upper canopy tree crowns. 191 

The phenocam was programmed for automatic image acquisition at a 30-minute interval from 192 

January 2010 to December 2011. The image acquisition stopped afterwards. For more details on 193 

the phenocam data as well as the method used for phenology analysis, see Wu et al. (2016). Below 194 

we briefly summarized the visual assessment approach (or ‘crown-based phenology inventory’ 195 

shown in Wu et al., 2016) for phenology analysis at k67. The approach includes the following five 196 

steps: i) we manually selected a best quality image every 6 days (i.e. overcast, near local noon, and 197 

free from shadows/rain/fog) throughout the entire image time series; ii) we divided the image of 198 

forest landscape into discrete regions of interest (ROIs) that corresponded to each individual well-199 

illuminated tree-crown; iii) for each selected image we surveyed all the identified tree-crowns, and 200 

visually assigned each crown to one of two phenostages: leafless (leaf shedding or bare branch 201 

materials accounts for around or more than 50% of the entire tree crown area) or leafy (otherwise), 202 

based on their colors, textures and temporal trends of leaf color within the adjacent two weeks; iv) 203 

for each selected image, we calculated a metric called ‘leafless tree-crowns fraction’ (1- ‘leafy 204 

tree-crowns fraction’) by dividing the number of leafless tree-crowns by all identified tree-crowns 205 

(n=65), and v) a mean annual cycle of monthly ‘leafless tree-crowns fraction’ (or NPV fraction) 206 

was derived to indicate ecosystem-scale average phenology at k67.  207 

The four-band high-resolution PlanetScope data from Planet Labs Inc. were used (Fig. 1c 208 

and Table 1). Planet Labs Inc. is an American private Earth imaging company, which offers daily 209 

images of global coverage, including PlanetScope (3m resolution, daily revisit cycle with near 210 

nadir view) and RapidEye (5m resolution, 5.5 days revisit cycle with near nadir view) satellite 211 

imagery. Researchers can access PlanetScope data through a research and education license. We 212 

here used the PlanetScope data, as it has finer spatial and temporal resolutions compared with 213 

RapidEye. At k67, we surveyed all available PlanetScope data for 2018 and 2019, and found no 214 

good wet season images (January to May, plus December) due to heavy cloud contamination. 215 
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Therefore, only the six months (June to November) PlanetScope data with low cloud cover (<40%; 216 

predetermined by cloud filter provided by Planet Lab Inc.) were downloaded and used, including 217 

22 dates in 2018 and 16 dates in 2019. For clarity purposes, we focus on the 22 dates of 218 

measurements from 2018 in the main text. Results for 2019, which are very similar as the results 219 

for 2018, are in supplementary materials. At the Alter do Chão site, a total of 30 dates of 220 

PlanetScope measurements in 2018 from June to December were downloaded and used. For all 221 

PlanetScope data used in this study, the sensor viewing angle was less than 1.2° off nadir. 222 

The coarse-resolution MODIS data was also used (Fig. 1d). Since MODIS covers the four 223 

bands of PlanetScope (Table 1), it makes the integration of these two satellites possible. Here we 224 

used the MODIS BRDF/Albedo model parameter product, MCD43A1 (Schaaf et al., 2002), for 225 

three reasons. First, increasing evidence suggests that the BRDF effect associated with sun-sensor 226 

geometry is an important confounding factor affecting satellite-detected phenology in tropical 227 

forests (Galvao et al., 2011; Morton et al., 2014; Saleska et al., 2016). Second, BRDF-adjusted 228 

MODIS products detect tropical forest phenology in good agreement with ground measurements 229 

(Lopes et al., 2016; Wagner et al., 2016). Third, the BRDF-adjusted MODIS products from 230 

MCD43A1 have been rigorously validated previously (Maeda et al., 2016; Wu et al., 2018). The 231 

daily MCD43A1 data of 500m from February of 2000 to December of 2019 were downloaded. 232 

We then computed the BRDF-adjusted reflectance at a simulated nadir view, 0° relative azimuth 233 

angle, and 45° solar zenith angle, using the BRDF model parameters in the MCD43A1 data as 234 

inputs to the semi-empirical RossThick-LiSparse reciprocal model (Wanner et al., 1995).  235 

For the satellite data used in this study, there are four spatial extents involved and each has 236 

a distinct purpose. First, we used a 10km×10km area of plateau forest (Fig. 1c, d) representing the 237 

entire k67 site for cross-calibration by histogram matching between PlanetScope and MODIS (see 238 

Section 3.2.3). This is because a significant amount of pixels after quality control are needed for 239 

proper histogram matching, and the 10km×10km area provides sufficient valid MODIS pixels after 240 

quality control. One PlanetScope scene often may not cover the whole area, and thus in our study, 241 

multiple PlanetScope scenes of the same day were mosaicked and cropped for a full coverage of 242 

the 10km×10km area. Second, we used an 8km×8km area for the Alter do Chão site (Fig. 1e, f), 243 

and PlanetScope data of this site was firstly used to identify the permanent objects (i.e. buildings) 244 

that are spectrally stable and then used to evaluate the robustness of our method (see Section 3.2.4). 245 

Third, we used a moving window of a 5km×5km area surrounding a target pixel to firstly generate 246 
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the quality assurance (QA) flag (i.e. QA30; more details shown in Section 3.1) for that pixel and 247 

then assessed the gap-filling procedure based on its QA time series (more details shown in Section 248 

3.2.2). Fourth, we used a 3km×3km area centered on the k67 tower to calculate the seasonal trends 249 

of ecosystem-scale phenology derived from PlanetScope and MODIS, and then compared them 250 

with field and phenocam observations of leaf phenology. 251 

 252 

3. Methods 253 

In order to develop a rigorous method that integrates high-resolution PlanetScope with 254 

coarse-resolution MODIS for cross-scale phenology monitoring in tropical forests, we divided the 255 

work into the following four tasks: 1) acquiring and processing PlanetScope and MODIS data; 2) 256 

cross-calibrating PlanetScope data using BRDF-adjusted MODIS as the reference; 3) extracting 257 

reflectance spectra of the three key endmembers comprising tropical forest canopies (NPV, GV 258 

and shade; also see Fig. S1 for these example endmembers shown in a WorldView-2 image at the 259 

k67 site), and estimating endmember fractions for each calibrated PlanetScope image using a linear 260 

spectral unmixing model; and 4) evaluating the accuracy of derived seasonal trends in NPV and 261 

GV fractions from calibrated PlanetScope by comparing with ground and phenocam observations 262 

of leaf phenology. The first two tasks aim to improve the data quality of PlanetScope by developing 263 

consistent data processing tied to high quality data. The last two tasks aim to improve biophysical 264 

interpretation of PlanetScope data, by transforming surface reflectances to fractional covers of the 265 

real-world constituents of tropical forest canopy. A flow chart that summarizes the method and the 266 

four key tasks is shown in Fig. 2. 267 

 268 

3.1 (Task 1): Acquiring and processing PlanetScope and MODIS data  269 

 (1) PlanetScope. The orthorectified, near nadir view, level 3B surface reflectance product 270 

was accessed at https://www.planet.com/, including the quality control layer. We first generated a 271 

data quality mask based on the Unusable Data Mask (UDM) layer, following the instructions in 272 

Planet (2019). This default cloud masking, however, did not fully detect all cloud contamination. 273 

We therefore implemented a customized cloud/cloud-shadow removal algorithm that operated for 274 

each PlanetScope image, following Fraser et al. (2009) and Hillger and Clark (2002). This 275 

algorithm uses principal component analysis (PCA) (Chavez and Kwarteng, 1989) together with 276 
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Otsu thresholding (Otsu, 1979). After applying this additional clouds/cloud shadows quality 277 

control, we carefully checked and manually masked any remaining clouds and cloud shadows. 278 

This last step was labor intensive but developing a better automatic cloud/cloud-shadow removal 279 

algorithm is beyond the scope of this paper. 280 

 (2) MODIS. The MCD43A1 product was accessed at https://search.earthdata.nasa.gov/. 281 

This product provides the model parameters for removing the BRDF effect. We first adjusted the 282 

MCD43A1 reflectance to a nadir view, 0° relative azimuth angle and 45° solar zenith angle, 283 

following the technical guide at 284 

(https://www.umb.edu/spectralmass/terra_aqua_modis/v006/introduction). We then generated 285 

and applied the band-specific pixel QA layer that indicates high-quality band-specific BRDF 286 

inversion results (i.e. only using quality bit index = 0/1 for full/magnitude BRDF inversions) to 287 

retain as many good pixels (Schaaf et al., 2002, 2011). These procedures were applied to each 288 

pixel of daily MODIS data. Following Wu et al. (2018), we also applied the QA30 flag to further 289 

minimize cloud/aerosol impacts. This flag assumes that a pixel is most likely free from 290 

cloud/aerosol contamination when at least 30% of the pixels within a 5km×5km area centered on 291 

this pixel are also valid (i.e. passing through pixel QA control). Collectively, we applied QA30 292 

when calculating the mean MODIS seasonality using all 20-year (2000-2019) data as well as 293 

calculating the seasonal trends for the MODIS data in 2018 and 2019 (to match with PlanetScope 294 

data for cross-calibration). 295 

 296 

3.2 (Task 2): Cross-calibrating PlanetScope data using BRDF-adjusted MODIS  297 

We divided this task into four sub-tasks described in sub-sections 3.2.1 through 3.2.4. 298 

 299 

3.2.1 Retaining best quality MODIS data in 2018 and 2019  300 

For this subtask, first, the band-specific quality control (including pixel QA and associated 301 

QA30 flag) was generated and applied to daily MODIS data in 2018 and 2019 to filter bad pixels 302 

with cloud/aerosol/cloud-shadow contaminations. Second, for each pixel of our study sites, we 303 

used all the MODIS data (2000-2019) to derive an annual cycle of band-specific means and their 304 

95% confidence intervals at the daily timescale. This data had minimum cloud/aerosol 305 

contamination as it was sourced from a large selection of candidate pixels over time, and was then 306 
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used as an additional quality control to help filter any remaining bad pixels not previously removed 307 

in the MODIS 2018 and 2019 data.  308 

 309 

3.2.2 Gap-filling MODIS time series in 2018 and 2019 310 

High-quality paired satellite data of the same day were needed for cross-calibration but 311 

were not always available. To meet this need, we used the available best quality MODIS data for 312 

2018 and 2019 (as described in Section 3.2.1 above), and developed a gap-filling method to gap 313 

fill those missing values in 2018 and 2019. MODIS gap-filling for these two years was performed 314 

on a daily, per band and per pixel level, following the three scenarios as follows:  315 

i) if there were more than 200 valid daily measurements among a total of 365 measurements 316 

for a target MODIS pixel in 2018/2019, we then fitted a cubic spline curve to the data and used 317 

the daily fitted values for all days with missing values;  318 

ii) if there were more than 50 but less than 200 valid daily measurements for a target 319 

MODIS pixel in 2018/2019, we turned to a reference (i.e. mean valid daily measurements from a 320 

neighboring 5km×5km area centered on the target pixel) to assist gap-filling, with two situations. 321 

If the current-year MODIS data (2018/2019) of the neighboring 5km×5km area had sufficient 322 

(≥200) mean valid daily measurements, the current-year data only was used to calculate the 323 

reference. Otherwise, all 20 years of data (2000-2009) were used to derive the reference. With the 324 

reference, we fitted its seasonal trend with a cubic spline curve to cover the full annual cycle. In 325 

order to preserve any real divergence between the target pixel and the average from its neighboring 326 

5km×5km area, we then shifted the shape of the fitted reference curve up and down until it best 327 

matched with all the valid daily measurements of the target pixel in 2018/2019. We last 328 

interpolated those missing values of the target pixel based on the shifted curve. 329 

iii) if there were less than 50 valid daily measurements for a target MODIS pixel in 330 

2018/2019, we assumed each day’s reflectance of the target pixel was the same as from 20-year 331 

daily mean of its neighboring 5km×5km area. We first fitted a cubic spline curve to the 20-year 332 

daily mean, and then used the daily fitted values to fill all missing values of the target pixel in 333 

2018/2019.  334 

Our Fig. S2 summarized the relative abundance of these three gap-filling scenarios. The 335 

first two gap-filling scenarios dominated (>99%) in our study.  336 
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Since a long-term (2000-2019) mean annual cycle was involved in our gap-filling 337 

procedures (i.e. scenarios ii and iii, above), in order to test whether it is fine to use this long-term 338 

mean annual cycle, we respectively examined the ecosystem-scale MODIS daily mean for 2018, 339 

2019 and 2000-2019. As shown in Figs. 3 and S3, the curve of 2018/2019 and the curve of long-340 

term mean are very similar, suggesting that the use of long-term mean annual cycle to aid our gap-341 

filling processes is reasonable. Also in Figs. 3 and S3, the seasonal trend of gap-filled MODIS in 342 

2018/2019 very well tracks that of original, non-gap-filled MODIS in 2018/2019, providing 343 

additional confidence on the reliability of our gap-filling method. Admittedly, there was an 344 

empirical choice of the thresholds (at 200 and 50 valid daily values per year) in determine gap-345 

filling procedures. A further sensitivity test (Fig. S4), however, suggests that our gap-filling results 346 

are valid. For demonstration purpose, the original MODIS data with gaps and the corresponding 347 

gap-filled MODIS data are shown in the top and bottom panels of Fig. S5, respectively. 348 

 349 

3.2.3 Cross-calibrating PlanetScope using band-specific histogram matching 350 

PlanetScope was cross-calibrated to the (gap-filled) BRDF-adjusted MODIS of the same 351 

day using histogram matching—a commonly-used method for spectral cross-calibration of data 352 

acquired from different sensors (Chavez and Mackinnon, 1994; Yang and Lo, 2000). The cross-353 

calibration was conducted for each band of each PlanetScope image. We first upscaled 354 

PlanetScope to the MODIS spatial resolution, and then calculated the pair of band-specific 355 

histograms respectively for MODIS and the upscaled PlanetScope. A Gaussian distribution was 356 

then applied to fit the histograms (Fig. 4). For each reflectance band, we adjusted the upscaled 357 

PlanetScope data to give the same mean and standard deviation as the corresponding band from 358 

BRDF-adjusted MODIS, using a linear transformation. We recorded the band-specific adjustment 359 

coefficients. We then applied these derived coefficients to the PlanetScope images at their original 360 

3m resolution. Fig. S6 shows band-specific comparisons between PlanetScope data of pre and post 361 

cross-calibration. The calibrated PlanetScope data show less variability over the season compared 362 

to the original uncalibrated data. 363 

 364 

3.2.4 Evaluating the robustness of the cross-calibration results 365 

The robustness of our cross-calibration was evaluated by assessing the spectral consistency 366 

of permanent objects, i.e. the extracted building pixels at the Alter do Chão site that should have 367 
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stable reflectance spectra over a season after BRDF correction. Specifically, we manually 368 

identified about 180 building pixels in the PlanetScope images, and assessed the seasonal 369 

variability of their reflectance spectra prior and post cross-calibration.  370 

 371 

3.3 (Task 3): Estimating NPV and GV fractions using linear spectral unmixing of calibrated 372 

PlanetScope 373 

We hypothesized that there are three key elements within each forest canopy pixel (Fig. 374 

S1): NPV (bare illuminated branches), GV (illuminated green leaves) and shade (shadow caused 375 

by tall crowns and by deep narrow gaps). Our objective was to transform canopy reflectance of 376 

the four PlanetScope bands into variables with clear biophysical meaning. The variables of greatest 377 

interest were the NPV fraction and GV fraction. Details on the extraction of endmember-specific 378 

reflectance spectra and the linear spectral unmixing model follow. 379 

(1) Extracting endmember-specific reflectance spectra. We followed an existing approach 380 

(Roberts et al., 1992) to extract endmember-specific reflectance spectra. It includes the following 381 

four steps. First, we applied a single principle component (PC) transformation to all calibrated 382 

PlanetScope data to summarize their 4-D band space in a 2-D scatter plot of PC1 and PC2, which 383 

resulted in a triangular point cloud (Fig. S7). Second, we performed careful visual assessments to 384 

manually identify pure pixels of each of the three endmembers, collecting at least 80 pixels per 385 

endmember from the calibrated PlanetScope images covering the full dry season. Third, we plotted 386 

and overlaid these manually identified pure endmembers on the scatter plot as in Fig. S7, to see if 387 

they coincided with the point cloud vertices, as required for unmixing. Also in Fig. S7, we then 388 

delimited the rectangle for each endmember based on the mean and two standard deviations of 389 

each PCA axis derived from those manually identified. Last, we calculated the average reflectance 390 

per band for all image pixels found within the three rectangles to derive reflectance spectra for the 391 

three endmembers. We compared these endmember-specific reflectance spectra to spectra derived 392 

from the smaller number of visually sampled pixels and the results were very comparable (Fig. 393 

S8).  394 

 (2) Estimating pixel-level NPV and GV fractions using a linear spectral unmixing model. 395 

With the derived endmember-specific reflectance spectra, we then applied a linear spectral 396 

unmixing model (Keshava and Mustard, 2002) to estimate the fractional cover of each endmember 397 

on a pixel-by-pixel basis for each PlanetScope image, assuming that the three endmembers 398 
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contribute to surface reflectance in a weight that is linearly proportional to their fractional cover 399 

within a pixel. The linear spectral unmixing model can be written as below: 400 

ὼ = ∑ ὴ Ὡ +   , Ὥ = 1, ⋯ , ὔ                                                    (1) 401 

where ὴ  is the fraction of endmember k in pixel i, Ὡ  is the reflectance spectra of the kth 402 

endmember, M is the number of endmembers (M=3),   is an error term, ὼ  is the reflectance spectra 403 

of pixel i, and N is the total number of pixels of a given PlanetScope image. The fractional values 404 

of this model satisfy the constraints  405 

ὴ ≥ 0 ∀Ὧ = 1, ⋯ , ὓ; ∑ ὴ = 1.                                          (2) 406 

After estimating endmember-specific fractions, including the fractional covers for k=1, 2, 407 

3, respectively representing NPV, GV, and shade, we then re-assigned the shade fraction of each 408 

pixel to its NPV and GV components (see Eqns. 3 and 4), according to their initial, estimated 409 

fraction values in Eqn. 1. This is based on an assumption that shade effect happens equally to the 410 

NPV and GV elements. 411 

ὴ = ὴ + × ὴ                                                             (3) 412 

ὴ = ὴ + × ὴ                                                             (4) 413 

where ὴ , ὴ  and ὴ , ὴ  are the fractions of pure endmembers of NPV and GV in pixel i before 414 

and after reassignment of the shade fraction (ὴ ). After this attribution of shade, we were left with 415 

two endmembers, NPV and GV, whose fractional contribution to each PlanetScope pixel sums to 416 

1.0. We also applied the same linear spectral unmixing method, including endmember-specific 417 

reflectance spectra derived from calibrated PlanetScope, to the BRDF-adjusted MODIS data. 418 

 419 

3.4 (Task 4): Evaluating the accuracy of PlanetScope-derived seasonal trends in NPV and GV 420 

fractions by comparing with field and phenocam measurements of leaf phenology  421 

We evaluated linear regressions between ecosystem-scale PlanetScope-derived NPV and 422 

GV fractions over the six months (June to November) in 2018/2019 and three local phenology 423 

measurements, including: (i) field measurements of LAI, (ii) phenocam-based leafless tree-crown 424 

fraction, and (iii) phenocam-based leafy tree-crown fraction (=1-leafless tree crown fraction).  425 

 426 

3.5 (Sensitivity analysis): Assessing the effects of non-matching time span or spatial coverage on 427 

the derived ecosystem-scale leaf phenology patterns 428 
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There are multiple datasets involved in this study. These vary in the year of measurement, 429 

the multi-year duration of measurement and the spatial extent. Therefore, it is important to assess 430 

whether such variations would impact the derived ecosystem-scale leaf phenology patterns. For 431 

this purpose, we assessed the effects of temporal duration/offset and of spatial extent, respectively, 432 

summarized as below: 433 

(1) Evaluating the effect of temporal duration and temporal offset on the derived 434 

ecosystem-scale phenology. In this study, four datasets were used, including phenocam 435 

observations (daily in years 2010-2011), field LAI measurements (monthly in years 2000-2005), 436 

MODIS data (daily in years 2000-2019), and PlanetScope data (22 dates of measurements in 2018 437 

and 16 dates in 2019). Based on these datasets, we first tested whether the measurements from 438 

different years and multi-year durations would affect ecosystem-scale phenology using daily raw, 439 

non-gap-filled MODIS. The sensitivity analysis shows that the (average) ecosystem-scale 440 

phenology trends in 2000-2005, 2010-2011, 2018 and 2019 are very similar, and are all close to 441 

the 20-year mean seasonality at our study site (Fig. S9a, b). The analysis thus suggests that our 442 

local observations, though collected in different time periods, are still very useful to help evaluate 443 

ecosystem-scale phenology in 2018 and 2019.  444 

(2) Evaluating the effect of spatial extent on the derived ecosystem-scale phenology. 445 

Spatial extent also differs in our datasets, including phenocam (in an about 200m×300m area), 446 

field LAI measurements (in a 100m×100m area), MODIS (in a 10km×10km area) and PlanetScope 447 

(in a 10km×10km area). To test the effect of spatial extent, we used the calibrated PlanetScope 448 

data and respectively derived the ecosystem-scale average seasonal trend for windows of different 449 

sizes centered on the k67 eddy covariance tower: 100m×100m, 200m×300m, 500m×500m, 450 

1km×1km, 3km×3km, 5km×5km, and 10km×10km. The sensitivity analysis shows that regardless 451 

of the spatial extent, the (average) ecosystem-scale seasonal trends are quite similar and 452 

comparable (Fig. S9c, d). This also suggests that local observations from phenocam and LAI have 453 

sufficient spatial coverage to represent ecosystem-scale phenology at k67. 454 

 455 

4. Results 456 

4.1 Cross-calibrating PlanetScope: robustness of the method and the seasonal trend 457 

The robustness of our cross-calibration results was evaluated through the following three 458 

types of assessments: 1) at the forest ecosystem scale, the average seasonal variability of all bands 459 
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and of two vegetation indices (VIs), the normalized difference vegetation index (NDVI) and the 460 

enhanced vegetation index (EVI) (Figs. 5 and S10); 2) at the fine spatial scale, the seasonal trend 461 

in reflectance spectra of permanent objects (i.e. buildings) (Fig. 6); and 3) also at the fine scale, 462 

the spectral reflectance of three pure endmembers (NPV, GV, and shade) (Fig. 7). 463 

In the first assessment, our results show that calibrated PlanetScope captures the same 464 

ecosystem-scale seasonal trends from June to November as BRDF-adjusted MODIS, a consistent 465 

pattern throughout all four spectral bands and both VIs (blue, green, red, NIR, NDVI, and EVI; 466 

Figs. 5 and S10). Uncalibrated PlanetScope also shows similar dry season increasing trends across 467 

four reflectance bands and two VIs, but is not in perfect agreement with that of MODIS, possibly 468 

due to a BRDF effect related to dry-season variation in solar elevation as well as the inconsistency 469 

in the DN scaling among different PlanetScope sensors. As a result, the uncalibrated PlanetScope 470 

reflectance values and their seasonal ranges are both higher than those of BRDF-adjusted MODIS 471 

(Figs. 5 and S10). For example, the dry season range of blue reflectance in BRDF-adjusted MODIS 472 

is only 0.003-0.035, but it is 0.014-0.098 for PlanetScope. Similarly, ranges of 0.017-0.06, 0.007-473 

0.045, and 0.20-0.40 are found in BRDF-adjusted MODIS green, red and NIR reflectances 474 

respectively, while 0.020-0.110, 0.020-0.093, and 0.23-0.42 are found in the corresponding 475 

uncalibrated PlanetScope. The cross-calibration also reduces the PlanetScope fluctuation that 476 

departs from the overall uncalibrated seasonal trend. Such cross comparisons thus suggest that the 477 

PlanetScope surface reflectance data indeed requires cross-calibration, and the proposed method 478 

effectively cross-calibrates the PlanetScope data, resulting in the same seasonal trend as MODIS 479 

at the ecosystem scale. 480 

In addition to the ecosystem-scale consistency, our two additional assessments also 481 

demonstrate that calibrated PlanetScope rigorously captures the seasonal trend in surface 482 

reflectance at the fine scale. The assessment from the permanent objects demonstrates that the 483 

cross-calibration stabilizes the reflectance spectra variability of the buildings at the fine scale. As 484 

shown in Fig. 6, after the cross-calibration, the buildings have nearly constant reflectance spectra 485 

across the full dry season from June to November. In contrast, prior to calibration, their reflectance 486 

spectra show large inter-month variability. Another assessment from endmember-specific 487 

reflectance spectra also suggests that the post-calibration reflectance spectra for each pure 488 

endmember (of 3m spatial scale of canopy surface) show small variation within each endmember, 489 
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while displaying large inter-endmember differences for all four reflectance bands (Fig. 7), 490 

providing further confidence on the robustness of our calibrated results at the fine scale. 491 

Despite MODIS and calibrated PlanetScope having the same seasonal trend in ecosystem-492 

scale reflectance as above, our results suggest that calibrated PlanetScope also provides rich and 493 

detailed phenological variations at the pixel level of 3m (Fig. 8). Particularly, PlanetScope captures 494 

large variability in reflectance dynamics at the fine scale across both space and time. Such observed 495 

high seasonal variability at the fine-scale might result from the fact that the tropical forest at k67 496 

harbors high plant diversity, and tree individuals of different species or the same species but with 497 

different growth environments vary in their phenological events including both timing and 498 

magnitude.  499 

 500 

4.2 Evaluating the seasonal trends in NPV and GV fractions derived from the calibrated 501 

PlanetScope data 502 

We compared the PlanetScope-derived NPV fraction (and its complement, GV fraction) 503 

with phenocam and field LAI observations. Our results demonstrate that at the ecosystem-scale, 504 

the estimated seasonal trends in NPV fraction agree well with phenocam observations of leafless 505 

tree-crown fraction (R2=0.82, p=0.014 for PlanetScope 2018 in Fig. 9a; R2=0.73, p=0.030 for 506 

PlanetScope 2019 in Fig. S11a), all of which show a decreasing trend in NPV fraction throughout 507 

the full dry season. The absolute dry-season change in NPV fraction is also similar across all 508 

indicators from both phenocam and PlanetScope: about 10% decrease from June to November. 509 

Meanwhile, we also observed a modest absolute value difference between the two approaches, 510 

with the NPV fraction derived from PlanetScope consistently having ~5-10% higher fraction 511 

values than the phenocam observations. The alternative metric, GV fraction from calibrated 512 

PlanetScope, also shows the expected complimentary dry-season increasing trends with phenocam 513 

observations (R2=0.82, p=0.014 for PlanetScope 2018 in Fig. 9b; R2=0.73, p=0.030 for 514 

PlanetScope 2019 in Fig. S11b) and field LAI measurements (R2=0.81, p=0.015 for PlanetScope 515 

2018 in Fig. 9b; R2=0.72, p=0.034 for PlanetScope 2019 in Fig. S11b). Additionally, the NPV 516 

fraction extracted from BRDF-adjusted MODIS using the same linear spectral unmixing model 517 

also shows the similar pattern as that from calibrated PlanetScope in 2018 (R2=0.78, p=0.019; Fig. 518 

S12) but having closer relationships with phenocam observations of the same year in 2010-2011 519 

(R2=0.96, p=0.001; Fig. S12). 520 
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 In addition, we assessed pixel-level (i.e. 3m resolution) seasonal variability in NPV 521 

fraction extracted from calibrated PlanetScope. Our results in Fig. 10 show that there are large 522 

seasonal variations in NPV fraction at the pixel level, with some pixels exhibiting a similar dry-523 

season decreasing trend compared with the ecosystem-scale average pattern as shown in Fig. 9a 524 

but with large differences in change magnitude across pixels, while other pixels exhibit no trend 525 

or an increasing seasonal trend. Meanwhile, Fig. 11 provides the dry-season change rate in NPV 526 

fraction at the pixel level with a much greater decreasing trend than increasing trend in NPV 527 

fraction (84.6% vs. 15.4%) in the same area. Further, by assessing the seasonal changing trend 528 

across all the PlanetScope pixels at the k67 site, our results in Fig. S13 suggest that there are 71.2% 529 

(and 74.4%) of all pixels showing a dry-season decreasing trend in NPV fraction (i.e. a green-up) 530 

while 28.8% (and 25.6%) of all pixels showing a dry-season increasing trend (i.e. a brown-down) 531 

in 2018 (and 2019). 532 

 533 

5. Discussion 534 

Understanding patterns of plant phenology from individual tree-crowns up to ecosystems 535 

remains a critical challenge in plant ecology in general (Berra et al., 2019; Hufkens et al., 2012) 536 

and ecology of tropical evergreen forests in particular (Albert et al., 2018; Lopes et al., 2016; Park 537 

et al., 2019). In this study, we demonstrated that an integration of high-resolution PlanetScope 538 

with coarse-resolution MODIS improves characterization of dry-season phenostages and green-up 539 

of tropical evergreen forests across a wide range of spatial scales from a pixel of 3m (i.e. the scale 540 

of an individual tree-crown or below) up to ecosystems. Combined with a linear spectral unmixing 541 

model, such cross-satellite integration quantitatively differentiates GV from NPV, which is 542 

superior to conventional phenology monitoring using reflectance or a vegetation index because it 543 

has improved biophysical meaning. Our work thus represents a significant step forward in our 544 

ability to improve characterization of dry-season leaf phenology pattern in tropical evergreen 545 

forests, ranging from tree-crown scales to ecosystems and from conventional metrics of reflectance 546 

or vegetation index to GV and NPV fractions. 547 

Our proposed PlanetScope-MODIS integration is similar in concept to previous cross-548 

sensor fusion/calibration work, but with advances. As in prior fusion/calibration work (Gao et al., 549 

2006; Houborg & McCabe, 2018a, 2018b), we used an orbital sensor of coarse spatial resolution 550 

that is frequent, accurate and corrected for BRDF effects as the benchmark to cross-calibrate a 551 
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high spatial resolution sensor with lower accuracy and uncorrected BRDF. We followed the 552 

approach of Luo et al. (2018) to gap fill missing days for each pixel in the MODIS timeline 553 

according to its own seasonal trend or the seasonal trends from adjacent pixels. Different from 554 

previous fusion/calibration work, we did not gap fill the high spatial resolution sensor timeline, 555 

because PlanetScope provides high frequency nadir-view coverage across the full dry season for 556 

our site. Beyond these similarities and differences, our approach includes three major 557 

advancements. 558 

First, to our knowledge, it is the first study to integrate multiple sensors and orbital 559 

platforms to improve fine-scale leaf phenology studies of tropical evergreen forest ecosystems. 560 

Cross-scale multi-satellite integration has been challenging in tropical evergreen forests, due to the 561 

frequent cloud cover over the annual cycle. Consequently, most satellite fusion/calibration 562 

techniques have been developed and applied in other biomes (Liao et al., 2019; Semmens et al., 563 

2016; Walker et al., 2012; Yang et al., 2017) but has been less used in tropical biomes both in 564 

techniques and mechanism for phenology monitoring (Viennois et al., 2013; Zeng et al., 2018). 565 

Here we demonstrated the feasibility of integrating PlanetScope with MODIS for cross-scale 566 

detection of tropical forest leaf phenology (Figs. 5 and 8). In contrast, the coarse-resolution 567 

MODIS sensors alone can detect ecosystem-scale but not fine-scale leaf phenology dynamics. 568 

Similarly, the use of the PlanetScope constellation alone is unsuccessful due to poor calibration 569 

(Houborg & McCabe, 2018a, 2018b) and seasonally varying solar elevation, leading to noisy and 570 

biased reflectance values over the season, impeding leaf phenology monitoring at both ecosystem 571 

and tree-crown scales (Figs. 5 and 6).  Only with the PlanetScope-MODIS integration, we detected 572 

the dry season leaf phenology dynamics at both ecosystem (i.e. an overall dry-season green-up 573 

pattern) and individual tree-crown (i.e. pronounced phenological diversity among individuals) 574 

scales. These remotely detected phenology patterns agree with many previous findings from field 575 

(e.g. Brando et al., 2010), tower-phenocam (e.g. Wu et al., 2016), and satellite (e.g. Huete et al., 576 

2006; Saleska et al., 2016) observations. For example, we confirm that Central Amazon evergreen 577 

forests undergo leaf turnover (as indicated by many pre-flush leafless phenostage crowns) 578 

followed by ecosystem-scale green-up (due to post-flush leaf maturation) in the dry season period 579 

of high sunlight and reduced rainfall (Wu et al., 2018). This suggests that these forests are not 580 

water limited and are more likely light limited (Guan et al., 2015; Huete et al., 2006). However, it 581 

remains mechanistically unclear and awaits more in-depth future exploration regarding why there 582 
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is such high inter-crown phenological diversity during the long dry-season (Figs. 10-11), despite 583 

an overall ecosystem-scale green-up pattern (Fig. 9).  584 

The success of our multi-sensor integration relies, first of all, on several conditions: i) 585 

MODIS has long-term frequent measurements, which provides sufficient observations to obtain 586 

cloud-free samples over annual cycles. Thus it is feasible to use the mean seasonal trend  to help 587 

interpolate missing daily values due to cloud/aerosol/cloud shading contamination; ii) MODIS 588 

BRDF-adjusted products have been rigorously validated previously (Maeda et al., 2016; Wagner 589 

et al., 2016; Wu et al., 2018), and thus can serve as a good reference for benchmarking other 590 

satellites, such as PlanetScope shown in this study (Fig. 6); and iii) PlanetScope has frequent 591 

measurements over the annual cycles, e.g. nearly daily revisit cycle, which also makes it feasible 592 

to obtain frequent cloud-free data, especially during the less cloudy dry season (Fig. 5). The 593 

success of our integration also suggests that the same approach might be extendable to Sentinel-2 594 

(with 5day interval, 10m resolution) (Drusch et al., 2012) and other satellites with both frequent 595 

revisit and high spatial resolution (e.g. GeoEye-1, GaoFen-2, VENuS and Pleiades) (Dedieu et al, 596 

2006; Dribault et al., 2012; Gu and Tong, 2015; Pu et al., 2018). We recommend BRDF-adjusted 597 

MODIS be used as a calibration reference for such multi-sensor integration.  598 

Second, we applied rigorous assessments to ensure such PlanetScope-MODIS integration 599 

worked consistently well across all scales. The calibrated PlanetScope data exhibited the same 600 

seasonal pattern as MODIS at the ecosystem scale (e.g. green lines in Fig. 5). However, this alone 601 

does not prove the cross-calibration also works at the fine spatial scale. For validation of fine-scale 602 

we performed one additional assessment which is the post-calibration spectral stability over the 603 

entire dry season for permanent objects (i.e. buildings) (Fig. 6b). The other is the assessment of 604 

endmember-specific reflectance spectra (NPV, GV, and shade) extracted from the calibrated 605 

PlanetScope data (Fig. 7). These endmember-specific reflectance spectra agree well with previous 606 

findings based on field measurements of reflectance spectra of the three canopy materials (Asner, 607 

1998; Clark and Roberts, 2012), with other high-resolution satellite data (Feret et al., 2015), and 608 

with process-based model simulations (Wu et al., 2018). In summary, a multitude of validation 609 

assessments suggest the proposed PlanetScope-MODIS integration works consistently well at both 610 

fine and ecosystem scales. Additionally, because stable building reflectance spectra and NPV and 611 

GV fractions were extracted on the PlanetScope pixel level of  3m, we conclude the cross-612 

calibration allows detection of tree-crown scale phenostages.  613 
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Third, our approach provides a metric with clear biophysical meaning, the NPV fraction or 614 

its complement, the GV fraction, to aid quantitative measurements of tropical leaf phenology. 615 

Satellite remote sensing has been powerful to monitor land surface phenology over large areas 616 

(Moulin et al., 1997; White et al., 2009), but lacks clear biophysical meaning if expressed as 617 

canopy reflectance, or even as a vegetation index (Samanta et al., 2012; Wu et al., 2018). The 618 

timing of massive leaf flush and of complete or partial loss are important phenostages at the tree-619 

crown scale and are detectable using canopy leaf fractional cover (Lopes et al., 2016; Richardson 620 

et al., 2018). Based on this idea, we derived the NPV fraction to represent fractional cover of non-621 

photosynthetic vegetation within a PlanetScope pixel using linear spectral unmixing. Our derived 622 

dry-season NPV trends demonstrate strong ecosystem-scale agreement with phenocam 623 

observations (Fig. 9) while also characterize large inter-crown variance at the fine-scale (Figs. 10-624 

11), highlighting the effectiveness of our approach.  625 

It is also worthy to note that there is some consistent seasonal mismatch in the absolute 626 

value of NPV fraction between phenocam and PlanetScope (Fig. 9). We hypothesize two main 627 

reasons for this mismatch. First, the NPV endmember spectra derived from 3-m PlanetScope data 628 

might differ from laboratory spectra of pure bare branch material. As a result, green leaves of 629 

shorter crowns (i.e. understory) are in the background of a single bare crown and the leaves of 630 

surrounding green crowns strongly transmit and reflect NIR preferentially onto an isolated bare 631 

crown, raising apparent NIR reflectance in the PlanetScope-derived NPV endmember (Eriksson et 632 

al., 2006). This leads to an overestimate of NPV fraction as part of green leaf information is 633 

assigned to the NPV category in a linear spectral unmixing. Second, though the seasonal trend in 634 

bare crown exposure was well correlated between the phenocam years of 2010-2011 and the 635 

PlanetScope year of 2018/2019, there could be a difference in magnitude between these two time 636 

periods (e.g. Fig. S12). Therefore, a further detailed monitoring and validation of tree-crown scale 637 

leaf phenology (e.g. using drones; Park et al., 2019) is still needed, but beyond the scope of this 638 

paper. Dry-season flowering in tropical trees (e.g. Borchert et al., 2005; Carvalho et al., 2013) 639 

might also affect the estimation of NPV fraction. Whether the flowering would lead to an 640 

overestimate of NPV fraction remains unknown, so more in-situ measurements of both flower 641 

phenology and canopy reflectance of flowering canopies are still needed to help quantify the 642 

flowering impacts. Nonetheless, flowers in the crowns of most Central Amazon trees occupy a 643 

small fraction of crown area, and a recent study (Lopes et al., 2016) using a tower-mounted 644 
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phenocam in a Central Amazon forest near Manaus, Brazil found that flowers have little effect on 645 

the seasonal change in ecosystem-scale “greenness”.  646 

The proposed PlanetScope-MODIS integration for assessments of seasonal and spatial 647 

dynamics in NPV fraction at the tree-crown scale also brings new opportunities to advance plant 648 

ecology studies. First, it can improve our understanding of phenological scaling from individuals 649 

to ecosystems (Nijland et al., 2016; Vrieling et al., 2017). Since ecosystem-scale phenology 650 

emerges from the phenology of a community of tree species and individuals, several recent studies 651 

have shown that the diversity in plant phenology at the fine scale can significantly affect the 652 

ecosystem-scale phenology extracted, including the timing of key phenological events (e.g. leaf 653 

on and off) (Chen et al., 2018) and the magnitude of seasonal fluctuations (e.g. Lopes et al., 2016; 654 

Saleska et al., 2016). This not only applies to the temperate biomes, where ecosystem-scale 655 

phenology shows large sensitivity to global climate change (Jeong et al., 2011; Körner and Basler, 656 

2010; Thackeray et al., 2016), but is also important for the tropical biomes, where phenological 657 

dynamics at the tree-crown level dominantly determine tropical forests’ ability to interact with the 658 

climate system (e.g. Albert et al., 2018; Wright et al., 2017; Wu et al., 2016). The improved fine-659 

scale phenology monitoring as shown here thus offers a great opportunity to revisit these scaling 660 

issues. Second, fine-scale NPV assessments also provide an important dataset to help parameterize, 661 

constrain, and evaluate process-based models. Leaf phenology has been an important component 662 

for process-based models to simulate large-scale climate-vegetation interactions (Fisher et al., 663 

2015; Restrepo-Coupe et al., 2017; Richardson et al., 2012). Yet the patterns and mechanisms of 664 

leaf phenology over large scales remain poorly understood (Richardson et al., 2010; Xu et al., 2016, 665 

2017). Once leaf phenology patterns have been derived at both fine and ecosystem scales, it 666 

becomes possible to evaluate the competing mechanisms underlying current phenology models 667 

and to parameterize process-based models for cross-scale simulations of carbon and water fluxes. 668 

      Despite these promising implications, our study also identifies four important next steps 669 

that need to be considered for future advances. First, the robustness of this method in the wet 670 

season is not yet assessed due to the frequent cloud covers in the high rainfall wet season of our 671 

study site. There might be even fewer or no valid pixels for both MODIS and PlanetScope 672 

measurements, resulting in higher uncertainty for MODIS gap-filling results in the wet season and 673 

insufficient PlanetScope pixels for spectral cross-calibration using the histogram matching 674 

approach (Fig.3). To (partly) resolve this issue, we recommend a stricter quality control for 675 
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MODIS and an improved cloud removal algorithm for PlanetScope (e.g. Planet’s UDM2 676 

classification approach; Shendryk et al., 2019) to retain as many valid pixels and/or PlanetScope 677 

in a monthly composite (assuming unchanged leaf phenology within a month) be needed to ensure 678 

sufficient valid pixels for spectral cross-calibration. Second, the topography effects are not yet 679 

considered in this study. Across large tropical areas, there are large variations in topography 680 

(Jucker et al., 2018; Schwartz et al., 2019). Slope and aspect of the land relative to view and 681 

illumination angles exert large effects on apparent land surface reflectance (Matsushita et al., 2007; 682 

Wu et al., 2019a, 2019b). To avoid these complications, we focused on a large flat plateau site in 683 

the current study. But it is thus important to explore whether the same method can be extended to 684 

other regions with more accentuated topographic variation. Third, we used a fixed PlanetScope-685 

derived, endmember-specific reflectance spectra in linear spectral unmixing. Other unmixing 686 

models (Asner et al., 2009; Roberts et al., 1998) accommodate variation in the reflectance spectra 687 

of each endmember. Allowing for such variation is important for deriving a more broadly 688 

applicable approach across large tropical areas. Fourth, our multi-sensor integration can enable 689 

high-resolution monitoring of dry season dynamics in canopy-surface NPV and GV fractions. 690 

However, it remains difficult to separate each individual tree crowns. Therefore, any approach to 691 

enable tree-crown segregation or to combine other high-resolution orthorectified images (e.g. 692 

drone or aerial photos) for tree-crown segregation (Klosterman et al., 2018; Park et al., 2019) will 693 

make the derived fine-scale phenology metrics more useful.  694 

 695 

6. Conclusions 696 

This study develops a method to integrate PlanetScope with BRDF-adjusted MODIS to 697 

enable cross-scale phenology monitoring in a Central Amazon tropical evergreen forest. The 698 

method shares a similar concept as previous satellite image cross-sensor fusion/calibration work, 699 

but also has three major advancements. First, it represents the first study in tropical evergreen 700 

forests to integrate multi-satellites to enable fine-scale phenology monitoring. Second, we adopted 701 

rigorous validation assessments to ensure that PlanetScope-MODIS integration worked 702 

consistently well across all spatial scales. Third, the method also offers a metric with clear 703 

biophysical meaning, i.e. the NPV fraction, to aid quantification of tropical leaf phenology. 704 

Compared with other phenology monitoring methods, such as tower-mounted phenocams and 705 

frequent drone flights, our integration not only aids detection of tree-crown scale leaf phenology 706 
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with high accuracy (R2=0.82; Fig. 9), but also allows for leaf phenology monitoring to much larger 707 

areas. These advantages make our method can be extended to other high resolution satellites and/or 708 

other regions, advancing our ability to monitor land plant phenology and associated vegetation 709 

dynamics in the context of global change. 710 

 711 
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Tables and Figure captions 1029 

Table 1. Spatial resolutions, accessed data time ranges, and spectral bands and band-specific 1030 
wavelength ranges of PlanetScope and MODIS data used at the k67 site. 1031 
 1032 

Satellite 
Spatial 

resolution (m) 
Accessed data 

time range 
Spectral band and wavelength range (nm) 
Blue Green Red NIR 

PlanetScope 3 
06/2018-11/2018 
06/2019-11/2019 

455-515 500-590 590-670 780-860 

MODIS 500 02/2000-12/2019 459-479 545-565 620-670 841-876 

 1033 

  1034 
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Figure captions 1035 

Figure 1. Locations and multi-scale observations at the k67 tower site and Alter do Chão site in a 1036 
Central Amazon evergreen forest in Brazil. (a) The locations of the study sites, including the red 1037 
pentagram for the k67 site and green square for the Alter do Chão site; and the multi-scale 1038 
observations include (b) tower-mounted phenocam (temporal coverage: 2010-2011; spatial 1039 
coverage: about 200m×300m) at the k67 site, which was equipped with a 3-band (NIR, red, and 1040 
green) Tetracam Agricultural Digital Camera, and thus green vegetation in the camera image (false 1041 
red composited by RGB=NIR-red-green) looks red; (c) PlanetScope data of near daily nadir 1042 
coverage at a 3m spatial resolution at the k67 site (temporal coverage: dry season of 2018 and 1043 
2019; spatial coverage: 10km×10km); (d) daily MODIS data of a 500m spatial resolution at the 1044 
k67 site (temporal coverage: 2000-2019; spatial coverage: 10km×10km); (e) PlanetScope data at 1045 
the Alter do Chão site (temporal coverage: dry season of 2018; spatial coverage: 8km×8km); and 1046 
(f) MODIS data at the Alter do Chão site (temporal coverage: 2000-2019; spatial coverage: 1047 
8km×8km). The background figure in panel (a) is adapted from National Geographic, ESRI; 1048 
phenocam data can be accessed from Wu et al. (2016); satellite data of the two sites in panel (c)-1049 
(f) are displayed in the same false red composite as phenocam; the k67 site is used to evaluate the 1050 
multi-scale approach for tropical phenology monitoring, and the Alter do Chão site is used to 1051 
evaluate robustness of the approach. 1052 

Figure 2. Flowchart of the method. It includes four major tasks: 1) acquiring and processing the 1053 
PlanetScope and MODIS data, 2) cross-calibrating the PlanetScope data using BRDF-adjusted 1054 
MODIS, 3) extracting reflectance spectra of the three key endmembers comprising tropical forest 1055 
canopies and estimating the fractions of non-photosynthetic vegetation (NPV) and green 1056 
vegetation (GV) of each pixel in the calibrated PlanetScope images, and 4) evaluating the accuracy 1057 
of PlanetScope-derived seasonal trends in NPV and GV fractions by comparing with ground-based 1058 
measurements of leaf phenology. 1059 

Figure 3. Example demonstration of band-specific outlier detection and gap-filling for BRDF-1060 
adjusted MODIS seasonality in 2018, including reflectance bands of (a) blue, (b) green, (c) red, 1061 
and (d) NIR. The 20-year (i.e. 2000-2019) mean MODIS seasonality is displayed with the mean 1062 
values in black lines, and grey shading for 95% confidence interval (i.e. 2.5 percentile for bottom 1063 
and 97.5 percentile for top); the 2018 seasonality after quality control is displayed with valid data 1064 
points (blue crosses, within the 95% confidence interval of 20-year mean seasonality) and outlier 1065 
data points (blue circles, outside the 95% confidence interval); the gap-filling results in 2018 are 1066 
displayed as red lines for daily means and red shadings for 95% confidence interval. A 5km×5km 1067 
area centered on the k67 tower site is used here for demonstration purposes. Light grey shading 1068 
indicates the dry season of the k67 site. 1069 

Figure 4. Example demonstration of band-specific histograms and the fitted Gaussian distribution 1070 
curves for BRDF-adjusted MODIS (shown as red) and upscaled PlanetScope (shown as green) on 1071 
November 21, 2018, including reflectance bands of (a) blue, (b) green, (c) red, and (d) NIR. The 1072 
spatial extent used here includes a 10km×10km area centered on the k67 tower site. BRDF-1073 
adjusted MODIS has a spatial resolution of 500m; upscaled PlanetScope refers to upscaling the 1074 
original PlanetScope of a 3m spatial resolution to the same spatial resolution as that of MODIS; 1075 
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the probability distribution function (PDF) is used to describe the fitted Gaussian distribution 1076 
curves.  1077 

Figure 5. Ecosystem-scale seasonality of BRDF-adjusted MODIS (20-year mean in black and its 1078 
95% confidence interval in grey shading, and 2018 gap-filled in red) and 2018 PlanetScope 1079 
(uncalibrated in blue and calibrated in green), including reflectance bands of (a) blue, (b) green, 1080 
(c) red, and (d) NIR, and vegetation indices of (e) Normalized Difference Vegetation Index 1081 
(NDVI), and (f) Enhanced Vegetation Index (EVI). BRDF-adjusted MODIS including both 20-1082 
year mean and 2018 gap-filled are displayed as background information; the 1083 
uncalibrated/calibrated PlanetScope is based on the histogram matching analysis as shown in Fig. 1084 
4; and a 3km×3km area centered on the k67 tower site is used here to calculate ecosystem-scale 1085 
seasonality. Light grey shading indicates the dry season of the k67 site. 1086 

Figure 6. Seasonal variation in PlanetScope-derived reflectance spectra of stable permanent 1087 
objects (urban buildings) (a) prior and (b) post cross-calibration. The 180 building pixels were 1088 
carefully and manually extracted from an area of 8km×8km centered on the town of Alter do Chão, 1089 
Brazil, which is 37 km from the k67 tower site (see Fig. 1 for more details). Error bars indicate 1090 
one standard deviation for the reflectance spectra among all building pixels; each colored line 1091 
indicates one of nine selected dates of PlanetScope measurements in 2018; these selected dates 1092 
cover the full dry season at the k67 site and the Alter do Chão site. 1093 
 1094 
Figure 7. The extracted mean (color lines) and one standard deviation (error bars) of reflectance 1095 
spectra for three key endmembers at the k67 site using all the calibrated PlanetScope data from 1096 
June to November in 2018 and 2019. These three endmembers are pixels of completely leafless 1097 
tree-crowns for pure non-photosynthetic vegetation (NPV), leafy tree-crowns for pure green 1098 
vegetation (GV), and deep shade/shadow portions of the canopy (shade).   1099 

Figure 8. Spatial and temporal variations in canopy reflectance for calibrated PlanetScope (top 1100 
panel) and corresponding magnified PlanetScope (bottom panel) (composited as RGB=NIR-red-1101 
blue). For demonstration purposes, we selected 6 dates among all 22 dates of PlanetScope 1102 
measurements during the dry season of 2018, including one date per month from June to November 1103 
(i.e. June 15, July 06, August 20, September 20, October 15, and November 01 from left to right); 1104 
each image subset (shown in top panel) centered on the k67 tower site has a spatial coverage of 1105 
500m×500m (=one MODIS pixel).  1106 
 1107 
Figure 9. Comparisons of PlanetScope-derived phenology metrics and ground-based phenology 1108 
measurements, including a) PlanetScope-derived and tower-phenocam measurements of NPV 1109 
fraction, and b) PlanetScope-derived and tower-phenocam measurements of GV fraction and field 1110 
LAI measurements. The calibrated PlanetScope data in 2018 are used here, and the PlanetScope-1111 
derived phenology metrics represent an average of a 3km×3km area centered on the k67 site; error 1112 
bars indicate one standard deviation. Tower-phenocam measurements in 2010-2011 (conducted in 1113 
an about 200m×300m area centered on the k67 site) and field LAI measurements in 2000-2005 (a 1114 
100m×100m plot, ~5 km apart from the k67 site) are based on the literature values (Brando et al., 1115 
2010; Wu et al., 2016; see methods for details).  1116 
 1117 
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Figure 10. Spatial and temporal variations in PlanetScope-derived NPV fraction in an area of 1118 
500m×500m centered on the k67 tower site (top panel) and in eight pixels located in the same area 1119 
(bottom panel). The spatial extent shown in the top panel is the same as Fig. 8, and 6 dates among 1120 
a total of 22 dates in the dry season of 2018 are selected, including one date per month from June 1121 
to November (June 15, July 06, August 20, September 20, October 15, and November 01 from left 1122 
to right). The gray bar with a range from 0 to 1 represents an increasing NPV fraction from 0 to 1123 
100% within an image pixel. For demonstration purposes, spatial and temporal dynamics of NPV 1124 
fraction in eight pixels (A to H) are shown in the bottom panel, with the ecosystem-scale average 1125 
NPV fraction of a 3km×3km area centered on the k67 site shown in black line; error bars indicate 1126 
one standard deviation. 1127 
 1128 
Figure 11. Assessing the dry-season change rate in NPV fraction derived from the calibrated 1129 
PlanetScope data in 2018, including (a) a map of dry-season change rate in NPV fraction for an 1130 
area of 500m×500m centered on the k67 tower site (the same as Fig. 10), and (b) statistical 1131 
summary on frequency distribution of dry-season change rate for all pixels shown in panel (a). The 1132 
dry-season change rate in NPV fraction is assessed through a linear regression analysis between 1133 
dry-season change in NPV fraction and day of year in the dry season. The dry-season change rate 1134 
in NPV fraction has a range from -0.005 to 0.005, with a negative value indicating dry-season 1135 
decrease in NPV fraction (or green-up) and a positive value rate indicating dry-season increase in 1136 
NPV fraction (or brown-down). In this area, there are 84.6% of pixels showing a dry-season green-1137 
up trend and 15.4% showing a brown-down trend. 1138 

 1139 
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